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ON THE STABILITY OF A NONAUTONOMOUS HAM1 LTONIAN SYSTEM 
UNDER A PARAMETRIC RESONANCE OF ESSENTIAL TYPE* 

A. P. IVANOV and A. G SOKOL'SKII 

The problem of the stability of the equilibrium position of an nonautonomous 
Hamiltonian system with periodic coefficients , in which two multipliers of the line- 

arized system are equal, is analyzed in a nonlinear setting. The stability in the 
finite approximation, and formal Liapunov stability or instability are prov- 
ed, depending on the Hamiltonian's coefficients. 

1. We consider a nonautonomous Hamiltonian system with two degrees of freedom 

dnk aH dPk aH (k=1,2) 
d(=rv dt=--apk (1.1) 

whose Hamiltonian H = H(qr, Pr, t) is analytic in qk$ pk in a neighborhood of the trivial equil- 
ibrium position 

H = Hs + . . . + H, + . . . (1.2) 

where the H, are m th-degree homogeneous polynomials in qkr Pk with 2n-periodic and t-con- 

tinuous coefficients ~PIYI~,F Q). The stability problem for such a system has been almost 
completely solved by now /1,2/. The case which in applied problems corresponds to theso- 
called parametric resonance of essential type /3/ remains unsolved and, as a rule, corresponds 
to the boundary of the stability region of the linearized system. The study of this case is 
necessitated by the desire to have a complete solution to the stability problem in concrete 
applied problems of mechanics. An example is the stability problem for the tridngular libra- 
tion points of the flat elliptic restricted three-body problem under bounded values of eccent- 
ricity and mass ratio. Problems of investigating the arbitrary periodic motions in autonomous 
Hamiltonian systems with the use of isopower reduction lead to systems of the type being 
analyzed. 

At first we study the normalization of the linearized system with Hamiltonian Hz. In 

the case being examined, without loss of generality we can assume that a linear canonic trans- 
formation separating the variables has already been made in the system and that the function 
H2 has been reduced to the form 

fb = h, (av PI) i- '/d&h, k* + PI') (6, = =!A h, > 0) (1.3) 

Therefore, for the present we take the original system to have one degreee of freedom and we 
consider it in detail. 

LetX(t)be the matrix of fundamental solutions of a linear system with Hamiltonian h,(p,, 
pl), normed by the initial condition X(0)-E (E is the unit matrix). Then under parametric 
resonance of basic type both eigenvalues of matrix x(2x) (i.e., the multipliers p , viz., 
the roots of the characteristic equation WIIX(2n)-pEjj = 0) 
and equal to+i. 

are real, equal to each other, 
This signifies that the pure imaginary parts of the characteristic exponents 

fih,(p =exp(fbih,)) are integers of half-integers. In addition, since the matrix X(h) has 
multiple eigenvalues, its normal form (and, consequently, the normal form of the Hamiltonian) 
depends upon the multiplicities of the elementary divisors of the characteristic matrix 
X&t)- pE. Thus, we have to distinguish four cases: 

ors are simple; 2)2h, b 2n + 1, 
1) 2h, = 2n +.l, the elementary divis- 

the elementary divisors are multiple; 3) 2& = 2n, the 
elementary divisors are simple; 4)2&I = 2n, the elementary divisors are multiple. Here n 
is an integer which can always be taken as zero, as we shall see below (see (2.4)J.Byanalogy 
with autonomous systems we say that second-order resonance obtains in cases 1) and 2) 
first-order resonance obtained in cases 3) and 4). 
N (t) II q:Pz' II= 

The linear transformation 11 q,,F'= 
with a real symplectic matrix N(t) differentiable and %-periodic in 

the Hamiltonian h,(q,,P,) to normal form, can be constructed by analogy with /1,2/. 
t, taking 

Theorem 1.1. Hamiltonian 4 (a, pJ is taken into one of the following normal forms: 
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hz (ql’, ~1’) = 0 Y N (t) = X(t) (X (t + 2~) = S (t)) (case 3) (1.5) 

h (Q1(, Pl’) +*;I (&=&-I), N(t)==XWPQWt QW- -:"I (case 4) (1.6) 

The constant matrix P is defined by one of the formulas 

where xjk = v I zrk 11 (2n), -d =/a 0. k = 1, 2) are the elements of matrix X(2n). 
Theorem 1.1 is proved by direct verification of the properties of the matrices -V(t). 
The normal forms (1.4)- (1.6) coincide with the normal forms for autonomous systems (for 

which & has the sense of the frequency of the linear oscillations) in the corresponding res- 
onance cases. Let us show that in Hamiltonian systems case 2) is never realized. Assume the 
contrary: let %=%+ n and let the elementary divisors of the characteristic matrix X(Zn)-pE 
(where P= erp (W&,)= -f) be multiple. By Liapunov's reducibility theorem such a system neces- 
sarily reduces to a constant-coefficient system 

dq’tdt - allq’ t a&, dp’tdt = %q’ -I- ai& Cl.71 

The roots of the defining equation of this system must be definition be pure imaginary. Hence 
=11-t 4¶==0 and, consequently, (1.7) is a canonic system. But the Hamiltonian of any one- 
dimensional autonamus canonic system with multiple elementary divisors reduces to form (1.6) 
wherein the fundamental matrix Q(t) (Q(O)= E) has a double eigenvalue p-1 when t== 2a, The 
fundamental matrix of the original system is similar to Q 0) since X (t) = N (t) Q (I) N-*(t). But 
similar matrices must have like eigenvalues. Consequently, the eigenvalues of matrix X(2n\ 
also equal one, which contradicts the initial assumption ll==%; n (p= -1). Therefore, case 2) 
need not be examined. 

Henceforth we reckon that the linear normalization has already taken place and that the 
quadratic part of Bamiltonian (1.2) has the normal form (1.3) in which kp(ql,pl) is defined by 
(1.4)- (1.6) for cases l), 31, 4), respectively. The stability of a one-dimensional system in 
a nonlinear setting was investigated in /S-7/ (also see survey /8/) for various interesting 
special cases. The most important results were obtainedin/6,7/. The case of multidimensional 
hm.iLtonian systems has almost not been considered. The results in the pr%sent paper general- 
ize those metioned. In general, it suffices to consider a system with two de$rees of freedom 
and then to carry all results easily over to the case of n-l-i degrees of freedom if only the 
characteristic exponents fix,, .z?zi&+, are not connected by parametric resonance relations 
of combinational or basic type. 

2. Let us consider the stability question for system (1.1) in case 1). In the system we 
make a nonlinear normalization such that the new Hamiltonian K acquires a simpler form. For 
this we first pass to the complex variables qi*,pk+ by the formulas (8, zi 1) 

qk* - ,q +--Ekqk + @II)> fi* -+ h- hh) @=- 1~2) (2.1) 

In the complex variables we have J%* = i3ilq,*Pz* + %**P*+* where h, = '12 in the case being 

examined, while the coefficients of form If,* satisfy the realness relations 

(2.2) 

Then the coefficients of the generating function Se normalising the polynomial substitution 

must be the solutions, 2n-periodic in t , of the differential equations /2/ 

Wt + ir~irl(r,llrpt)~~e,~-k~~~l*- &v,W, ~Vwl~ “A,(Vl_ PII + b (VI - pd (2.3) 

where g&,,,,,,(t) are the coefficients of form G,* defined uniquely by recurrence formulas from 
the coefficients.of the terms of lower order (*). From (2.3) we see that if rv,v~rp,~@((modi), 
then we can set Ir,,,CS saQo. If r~,- is an integer, we cannot suppress the corresponding 

term in the new Hamiltonian, in general. However, we can so choose &,,, it) that only the 

*) Markeev, A. P. and Sokol'skii, A. G., Some computational normalization algorithms for 

Hamiltonian systems. Preprint No.31, Inst.Prikl. Mat. Akad. Nauk SSSR, 1976. 
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resonant harmonic remains in the Taylor series expansion of k*&,& ($1 To be preci%e, We can 

Here the numbers +wz pcX3sesS property (2.21 and i's unchanged under the substitution hk+ 

hk + n (@is an arbitrary integer). Thus, after a nonlinear normafixation up to terms of 
order 112 the Bamiltonian takes the form 

K+ = illQl*&* -t tbQa*Pa* + 2 “v~u~~,,~ exp (- irv,vlll&) Q:“Q:“Pf’P~” “i_ K*n+2 + . . . (2.5) 

where the suannation is cassied out over nonnegative indices Yl? VI1 Pi* R such that s<Vl-k 
vI + pr -I- k <m, while r,~,, = s (integers). FinallyI in (2.5) we pass to real polar vari- 

*les fain are cmrdinates, rk a0 are twmenta~ by the formulas 

Qz-i fh, exp fi @k(pk + &r)l, Pk* =-6k l/;k exP[--i@##k+ k&l (2.61 

The stability problems far the original system with resp%ct to variables QkI pk alId for the 

normalized system with respect to variables rk are equivalent. 
we restrict the analysis to terms of up to fourth order inclusiv% (m=3,4). Thenormal 

form will be different in the following four subcases <the a are integers): la) 3&+~n,$# 

2~ -t f, 6% + 2s + 1; fb) 3x, = R; tc) ~%a, = 2R + 1; id) 6% = 2n + 1, 
In subcase 2%) the normal form is: . 

K rt jp) + luu (2.7) 

$30) =e @,. (q&l8 + 0, (qJ rl’h + Q04rssr KclJ = Kk + .." (2.8) 

to,, @,I = 2a,,, MS %I - 2Ww, sin =%I - =A,, w.a 291- i?tz,,za sin z& - +,, 

Co, bf = -.=&so, cm 2~ - ~W&atw sin 2~ - Wauzut. rD, = -a,, 

Theorem 2.1. 1) If a value go!* ~5 10, 214 exists such that CD.0 (cp1')=01 while 
@,o'(cpl*)+=O, then the equilibrium position is Liapunov-unstable. 2) If @,,,(cpJ*O for any 

real qlr than the equilibrium position is stable when terms of up to fourth order, inclusive, 
are t%ken in Hamiltonian (1.2). 3) If Q)~~(&#C. and the original system has one itegxee of 

freedom, then its equilibrium position is Liapunov-stable. 41 If for all Ot the functionR@j 
is sign-definite for rl 2 0, r, 20, then formal stability obtains, 

The instability is proved by constructing the Chataev function /1*2,4/ 

Vor[rl= -rr2*]sin Yt Y= -$('~~-~~*-t-s), 2<c<3 (2.9) 

where, by using the peria&icity of @ro((p& we can so select E that th% inequality (D,$(cpl)<o 
is fulfillozd in the neighborhood 1% - qr* I( 8. Then in the region 

Y >o: rt rp, - 9x* I< EV r2 = ftrr*'s O< 8 c $8 
the derivative of function (2.91 relatiw? to the equations of motion with Bamiltonfan (2.71 

dV m @' 
dt 1 +(I -lY)&sIo(~l)cea~ 

-u&(rpl)sin Y I + 0 (rf+l) 

is positivie definite /4/, whence by Cbeta@v's theorem we obtain the instability ofth%%quili- 
brium position. 

Since r, = ciukst is an integral of the truncated system with Hamiltonian E@+, we have 
that G = 51% -k K@j, where S= sign @*~(q+j too is an integral of the truncated system, i.e., 

&@t = 0, and this integral is sign-definite. Hence by Liapunov's stability theorrjm (G is 
the Liapunov function) we obtain the stability of the complete systam in the fourth ardar. If 
k& # n, where k = S,..., 
and, for an irrational 

&n + i, then from this follows even stability in the m-th order, 
5, formal stability /9/j. 

If the original system is one-dim%nsional and @40(tplJ+0, then by Theorem 2.1 frost /4/ 
(passage to the variables action-angle and use of Eo%er's theorem on invariant curvesf we 
obtain the Liapunov-stability of the equilibrium position. To prove formal stability we note 
that after the above-descrfbed nonlinear normalization has been carriad out for terms up to 
infinite order, the function (2.7) do%s not depend explicitly on time i) i.e.,whenthetheorem's 
hypotheses are fulfilled we have a sign-definite formal integral. 
definition in /9/, the equilibrium position is formally stable 

Then, according to the 
, i.e. stable in any finiteorder. 

In concluding the proof of Theorem 2.1 we note that its hypotheses are easily verified in a 
concrete lnechanical system. After the substitution f = COS% the prcbkm is reduced to 
asCert%ining the conditions for the location on segment I--t, 21 of the roots of a fourth-degree 
algebraic equation, which can be solved in radicals. However, it is convenient to US% an 
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(2,101 

ie unstable. 

Theorem 2.3. If in (2.11) (u;~ + b&- 420 - b&J 614 > 0, thea the equilibrium position 
is unstable. 

Thearems 2.2 and 2.3 can be proved by using Chetaev's theorem analogously as in /L,2,4/ 

and ?Rmomi?~ 2.1, having observed that for any values of the coefficients of functions cPtts 

and % hot vanishing simultane5usly) these functfOns will take values Of both signs. @e 
merely remark that case lcf is equivelahnt to the sirault~o~s fu2filhent of ule resonance 

relations 11+2h,= n1 and A,- 2&,- n,, where n,, a2 are integers of different parity. For 
subcase Id) we obtain 

K(O) = cP,,(rp,) rla f @B*(gl) i.Ifa 4_ EDls(gr, qQr,l/*r;.‘t -k @o$z”, Kc’) = KS + . . . (2.12) 

@IS - %o, GQ~ (M- ~&g+J - 2&b,,,, sin (cpi +- &!i,~,~$i -26&m, ~09 frpr - 3s&p,) + Lz,,,~ sin @pi - 38,$vS~ 

Theorem 2.4. 1) If a value grad @,2n] exists such tiat%~lrpr*f -% while %'(?A fo. 
than the equilibrium position is unstable. 2) If forO<cp,<2n, a,rq$<2n, r,>o, r,>O 

the functisan h'(O) is sign-~finite,thtasl~eequilibrium position is $ormally stable. 

3. I&t us coneider case 3) I when il= 0 and the chwacteristic matrix has sLmple elemant- 
ary divisors. We remark that from the applied viewpOint this case is less int@restfna than 
the case af multiple elementary divisors , considered in Sect.4, since to 
filmt of addftional c0nditiOns is necessary On the alements of matrix 
to q i'x(%) -f-m dtminishins by one, Therefore, hera we limit ourselves 
cription of the main results. Under an analysis based on terms of up to 
subcaees dE"e possible (the n are integers): 

%)&#n, &ihfh -I- 1; 3b) 3&*t. n; 34 4%== 2n-C 1 
For subcasra Sal, inthe normal form (2.7) 

K(0) = @W(%) r;r*+ %(gz) 5% + %(%) r,r, i- @,crtl 

realize it tbi ful- 

xtK4 which Leads 
t5 only a brief des- 
fourth or&x three 

@so(%) = Zb,,,, cos~~,-228,a,,,, sin3ppx+2B,a,01,cos 'ps- %belo sin gl, 

while the remaining functSons are defined in (2.8). In formulas (2.41, from which the quant- 
ities %%ms, bW,,,. are computed, we need to set X, =O, i.e., in (2.3) %v,-- &(va-- p& 

Theorem 3.1, If &+~i"c&~f &e#O, titan the equilibrium position is unstable. 
Howover, if ~~~~~~~ = 0, then Theorem 2.1 is valid. 

The first assertian in Theorem 3.1 can be proved by using the Ch%taev function fZ.%. 
Henceforth, we take (Dgo((pl)%O. Subcass 3b) is c~mplately analogous to subcase lbll and 

Theorem 2.2 is valid as well. Subcase 3c)is analogous to subcase ld). Now the normal form 
is defined by expressions (2.71, (2.81, wherein 

@M=; @w('F*) = 2%,,ces 4cp, - 26&,,o sin 4gp,- 4pzOp 

TheOrem 2.4 rema%ns valid. In addition, to it we n0w can add on the 8tatement: 33 ff a value 
**E H&k1 exists such that @,f&-0. while *~(~?*)pO, then the erquflibrium posit&W is_ 

unstable. It can be proved by using tba Chetaev function f2.9) in whfcfi the subsOrXpts 1 and 
2 must be interchanged. 

4. Now let b,- 0, while the elementary diviscsrs are multiple. We note that Sn contrast 

to the previously-considered cases, the m0tion of the l&near system is unstable. Heaver, as 
in the autmwmotw problem /QJ, from such &nstabflity ttbe solution grows as a li*ealy function 
of time) there still does not fOll0w the instability of the cornplate nonlinear system (see /7/ 
as we1.l). 

To carry out the nonlinear normalization we introduce the complex variables %*. Fz* by 
formulas (2.1) and we leave the variables Q,. p1 
the complex variables nOw H,* =lJ&,J.- 

unchanged, denoting them now by ql*. pl*, In 
i>,lq2*pz*, while instead of (2.2) we now have the realness 

conditions 



On the stability of a nonautonomous Hamiltonian system 691 

(4.1) 

Then the equations for determining the coefficients of the generating function and the new 
Hamiltonian are 

From (4.2) we see that in J? we can suppress all terms except those for which rvlv.p,c: = n 

(integers) and ill= 0 rimultaneously. The coefficients of the other terms are determined by 
formulas (2.4) in which I;,,.,,,,~,= h,(v?- pz), while the constants %,vIc4,,X satisfy the realness 
conditions (4.1). Then, having further made the substitution (2.6) for the variables with 
subscript 2 and omitting the asterisk on the variables with subscript 1, we obtain a real 
normal form of the Hamiltonian. Let k?., # n (then are integers) for k = 3,...,m. In this 
case, similarly to the autonomous problem /4/, we have 

where it is assumed that normalization has been carried out up to an orders suchthatA,,O#O. 

Theorem 4.1. 1) If m is odd, then the equilibrium position is unstable. 2) Ifmis 
even and 61A,.r<Ol then the equilibrium position is unstable. 3) If m is even and &A,,, 
>O, then the equilibrium position is stable when terms of up to order m are takenintoaccount. 
4) Ifm is even, 61A,,o >0 and 61Ao,t>0, then the equilibrium position is formally stable. 
5) If m is even, &A,,,>0 and the system has one degree of freedom, then its equilibrium 
position is Liapunov-stable. 

The proof of this theorem is obtained by combining the proofs of Theorem 4.1 of /4/ and 
of Theorem 2.1 of the present paper. The subcases 3&-n, 4X,=2n + 1 and others are invest- 
igated analogously as in the preceding sections. 

The authors thank A. P. Markeev, and also the participants and the director of V. V. 
Rumiantsev's seminar for discussions. 
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